Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.758
1.
J Alzheimers Dis ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38728183

Background: Individuals with type 2 diabetes (T2D) have an increased risk of cognitive symptoms and Alzheimer's disease (AD). Mis-metabolism with aggregation of amyloid-ß peptides (Aß) play a key role in AD pathophysiology. Therefore, human studies on Aß metabolism and T2D are warranted. Objective: The objective of this study was to examine whether acute hyperglycemia affects plasma Aß 1-40 and Aß 1-42 concentrations in individuals with T2D and matched controls. Methods: Ten participants with T2D and 11 controls (median age, 69 years; range, 66-72 years) underwent hyperglycemic clamp and placebo clamp (saline infusion) in a randomized order, each lasting 4 hours. Aß 1-40, Aß 1-42, and insulin-degrading enzyme (IDE) plasma concentrations were measured in blood samples taken at 0 and 4 hours of each clamp. Linear mixed-effect regression models were used to evaluate the 4-hour changes in Aß 1-40 and Aß 1-42 concentrations, adjusting for body mass index, estimated glomerular filtration rate, and 4-hour change in insulin concentration. Results: At baseline, Aß 1-40 and Aß 1-42 concentrations did not differ between the two groups. During the hyperglycemic clamp, Aß decreased in the control group, compared to the placebo clamp (Aß 1-40: p = 0.034, Aß 1-42: p = 0.020), IDE increased (p = 0.016) during the hyperglycemic clamp, whereas no significant changes in either Aß or IDE was noted in the T2D group. Conclusions: Clamp-induced hyperglycemia was associated with increased IDE levels and enhanced Aß 40 and Aß 42 clearance in controls, but not in individuals with T2D. We hypothesize that insulin-degrading enzyme was inhibited during hyperglycemic conditions in people with T2D.

2.
J Affect Disord ; 358: 250-259, 2024 May 07.
Article En | MEDLINE | ID: mdl-38723679

BACKGROUND: This exploratory study investigated cerebrospinal fluid (CSF) synaptic protein biomarkers in bipolar disorder (BD), aiming to highlight the neurobiological basis of the disorder. With shared cognitive impairment features between BD and Alzheimer's disease, and considering increased dementia risk in BD patients, the study explores potential connections. METHODS: Fifty-nine well-characterized patients with BD and thirty-seven healthy control individuals were examined and followed for one year. Synaptic proteins encompassing neuronal pentraxins (NPTX)1, NPTX2, and NPTX-receptor, 14-3-3 protein family epsilon, and zeta/delta, activating protein-2 complex subunit beta, synucleins beta-synuclein and gamma-synuclein, complexin-2, phosphatidylethanolamine-binding protein 1, rab GDP dissociation inhibitor alpha, and syntaxins 1B and 7 were measured in CSF using a microflow liquid chromatography-mass spectrometric multiple reaction monitoring set-up. Biomarker levels were compared between BD and HC and in BD before, during, and after mood episodes. RESULTS: The synaptic proteins revealed no statistically significant differences between BD and HC, neither at baseline, one-year follow-up, or in terms of changes from baseline to follow-up. Moreover, the CSF synaptic protein levels in patients with BD were unaltered compared to baseline when they stabilized in euthymia following an affective episode and at one-year follow-up. LIMITATION: It is uncertain what the CSF biomarker concentrations reflect since we yet do not know the mechanisms of release of these proteins, and we are uncertain of what increased or decreased levels reflect. CONCLUSION: This first-ever investigation of a panel of CSF protein biomarkers of synaptic dysfunction in patients with BD and HC individuals found no statistically significant differences cross-sectionally or longitudinally.

3.
medRxiv ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38746261

Background: Plasma phosphorylated-tau217 (p-tau217) has been shown to be one of the most accurate diagnostic markers for Alzheimer's disease (AD). No studies have compared the clinical performance of p-tau217 as assessed by the fully automated Lumipulse and SIMOA ALZpath p-tau217. Aim: To evaluate the diagnostic accuracy of Lumipulse and SIMOA plasma p-tau217 assays for AD. Methods: The study included 392 participants, 162 with AD, 70 with other neurodegenerative diseases (NDD) with CSF biomarkers and 160 healthy controls. Plasma p-tau217 levels were measured using the Lumipulse and ALZpath SIMOA assays. The ability of p-tau217 assessed by both techniques to discriminate AD from NDD and controls was investigated using ROC analyses. Results: Both techniques showed high internal consistency of p-tau217 with similar correlation with CSF p-tau181 levels. In head-to-head comparison, Lumipulse and SIMOA showed similar diagnostic accuracy for differentiating AD from NDD (area under the curve [AUC] 0.952, 95%CI 0.927-0.978 vs 0.955, 95%CI 0.928-0.982, respectively) and HC (AUC 0.938, 95%CI 0.910-0.966 and 0.937, 95% CI0.907-0.967 for both assays). Conclusions: This study demonstrated the high precision and diagnostic accuracy of p-tau217 for the clinical diagnosis of Alzheimer's disease using either fully automated or semi-automated techniques.

4.
bioRxiv ; 2024 May 05.
Article En | MEDLINE | ID: mdl-38746436

Using the Olink Explore 1536 platform, we measured 1,463 unique proteins in 303 cerebrospinal fluid (CSF) specimens from four clinical centers that included uninfected controls and 12 groups of people living with HIV-1 infection representing the spectrum of progressive untreated and treated chronic infection. We present three initial analyses of these measurements: an overview of the CSF protein features of the sample; correlations of the CSF proteins with CSF HIV-1 RNA and neurofilament light chain protein (NfL) concentrations; and comparison of the CSF proteins in HIV-associated dementia ( HAD ) and neurosymptomatic CSF escape ( NSE ). These reveal a complex but coherent picture of CSF protein changes that includes highest concentrations of many proteins during CNS injury in the HAD and NSE groups and variable protein changes across the course of neuroasymptomatic systemic HIV-1 progression, including two common patterns, designated as lymphoid and myeloid patterns, related to the principal involvement of their underlying inflammatory cell lineages. Antiretroviral therapy reduced CSF protein perturbations, though not always to control levels. The dataset of these CSF protein measurements, along with background clinical information, is posted online. Extended studies of this unique dataset will provide more detailed characterization of the dynamic impact of HIV-1 infection on the CSF proteome across the spectrum of HIV-1 infection, and further the mechanistic understanding of HIV-1-related CNS pathobiology.

5.
Nat Commun ; 15(1): 3676, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693142

Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively in translational research as well as in clinical practice for diagnosis of neurological diseases, e.g., Alzheimer's disease (AD). However, CSF biomarker concentrations may be influenced by non-disease related inter-individual variability. Here we use a data-driven approach to demonstrate the existence of inter-individual variability in mean standardized CSF protein levels. We show that these non-disease related differences cause many commonly reported CSF biomarkers to be highly correlated, thereby producing misleading results if not accounted for. To adjust for this inter-individual variability, we identified and evaluated high-performing reference proteins which improved the diagnostic accuracy of key CSF AD biomarkers. Our reference protein method attenuates the risk for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with broad implications for both research and clinical practice.


Alzheimer Disease , Biomarkers , Cerebrospinal Fluid Proteins , Humans , Biomarkers/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Cerebrospinal Fluid Proteins/analysis , Cerebrospinal Fluid Proteins/metabolism , Male , Female , Sensitivity and Specificity , Aged , Brain Diseases/cerebrospinal fluid , Brain Diseases/diagnosis , Middle Aged , Amyloid beta-Peptides/cerebrospinal fluid
6.
Commun Biol ; 7(1): 528, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704445

Neuronal dysfunction and cognitive deterioration in Alzheimer's disease (AD) are likely caused by multiple pathophysiological factors. However, mechanistic evidence in humans remains scarce, requiring improved non-invasive techniques and integrative models. We introduce personalized AD computational models built on whole-brain Wilson-Cowan oscillators and incorporating resting-state functional MRI, amyloid-ß (Aß) and tau-PET from 132 individuals in the AD spectrum to evaluate the direct impact of toxic protein deposition on neuronal activity. This subject-specific approach uncovers key patho-mechanistic interactions, including synergistic Aß and tau effects on cognitive impairment and neuronal excitability increases with disease progression. The data-derived neuronal excitability values strongly predict clinically relevant AD plasma biomarker concentrations (p-tau217, p-tau231, p-tau181, GFAP) and grey matter atrophy obtained through voxel-based morphometry. Furthermore, reconstructed EEG proxy quantities show the hallmark AD electrophysiological alterations (theta band activity enhancement and alpha reductions) which occur with Aß-positivity and after limbic tau involvement. Microglial activation influences on neuronal activity are less definitive, potentially due to neuroimaging limitations in mapping neuroprotective vs detrimental activation phenotypes. Mechanistic brain activity models can further clarify intricate neurodegenerative processes and accelerate preventive/treatment interventions.


Alzheimer Disease , Amyloid beta-Peptides , Brain , tau Proteins , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Humans , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/diagnostic imaging , Brain/pathology , Male , Female , Aged , Magnetic Resonance Imaging , Middle Aged , Positron-Emission Tomography , Models, Neurological , Biomarkers/blood , Aged, 80 and over , Electroencephalography , Neurons/metabolism
7.
Alzheimers Res Ther ; 16(1): 107, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734612

BACKGROUND: The recent development of techniques to assess plasma biomarkers has changed the way the research community envisions the future of diagnosis and management of Alzheimer's disease (AD) and other neurodegenerative disorders. This work aims to provide real world evidence on the clinical impact of plasma biomarkers in an academic tertiary care center. METHODS: Anonymized clinical reports of patients diagnosed with AD or Frontotemporal Lobar Degeneration with available plasma biomarkers (Aß42, Aß42/Aß40, p-tau181, p-tau231, NfL, GFAP) were independently assessed by two neurologists who expressed diagnosis and diagnostic confidence three times: (T0) at baseline based on the information collected during the first visit, (T1) after plasma biomarkers, and (T2) after traditional biomarkers (when available). Finally, we assessed whether clinicians' interpretation of plasma biomarkers and the consequent clinical impact are consistent with the final diagnosis, determined after the conclusion of the diagnostic clinical and instrumental work-up by the actual managing physicians who had complete access to all available information. RESULTS: Clinicians assessed 122 reports, and their concordance ranged from 81 to 91% at the three time points. At T1, the presentation of plasma biomarkers resulted in a change of diagnosis in 2% (2/122, p = 1.00) of cases, and in increased diagnostic confidence in 76% (91/120, p < 0.001) of cases with confirmed diagnosis. The change in diagnosis and the increase in diagnostic confidence after plasma biomarkers were consistent with the final diagnosis in 100% (2/2) and 81% (74/91) of cases, respectively. At T2, the presentation of traditional biomarkers resulted in a further change of diagnosis in 13% (12/94, p = 0.149) of cases, and in increased diagnostic confidence in 88% (72/82, p < 0.001) of cases with confirmed diagnosis. CONCLUSIONS: In an academic tertiary care center, plasma biomarkers supported clinicians by increasing their diagnostic confidence in most cases, despite a negligible impact on diagnosis. Future prospective studies are needed to assess the full potential of plasma biomarkers on clinical grounds.


Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Frontotemporal Lobar Degeneration , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Biomarkers/blood , Frontotemporal Lobar Degeneration/blood , Frontotemporal Lobar Degeneration/diagnosis , Amyloid beta-Peptides/blood , tau Proteins/blood , Female , Male , Aged , Peptide Fragments/blood , Middle Aged , Neurofilament Proteins/blood
8.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732147

Both high serum insulin-like growth factor-binding protein-1 (s-IGFBP-1) and insulin resistance (IR) are associated with poor functional outcome poststroke, whereas overweight body mass index (BMI; 25-30) is related to fewer deaths and favorable functional outcome in a phenomenon labeled "the obesity paradox". Furthermore, IGFBP-1 is inversely related to BMI, in contrast to the linear relation between IR and BMI. Here, we investigated s-IGFBP-1 and IR concerning BMI and 7-year poststroke functional outcome. We included 451 stroke patients from the Sahlgrenska Study on Ischemic Stroke (SAHLSIS) with baseline measurements of s-IGFBP1, homeostasis model assessment of IR (HOMA-IR), BMI (categories: normal-weight (8.5-25), overweight (25-30), and obesity (>30)), and high-sensitivity C-reactive protein (hs-CRP) as a measure of general inflammation. Associations with poor functional outcome (modified Rankin scale [mRS] score: 3-6) after 7 years were evaluated using multivariable binary logistic regression, with overweight as reference due to the nonlinear relationship. Both normal-weight (odds-ratio [OR] 2.32, 95% confidence interval [CI] 1.30-4.14) and obese (OR 2.25, 95% CI 1.08-4.71) patients had an increased risk of poor functional outcome, driven by deaths only in the normal-weight. In normal-weight, s-IGFBP-1 modestly attenuated (8.3%) this association. In the obese, the association was instead attenuated by HOMA-IR (22.4%) and hs-CRP (10.4%). Thus, a nonlinear relation between BMI and poor 7-year functional outcome was differently attenuated in the normal-weight and the obese.


Body Mass Index , Inflammation , Insulin Resistance , Insulin-Like Growth Factor Binding Protein 1 , Humans , Female , Male , Aged , Insulin-Like Growth Factor Binding Protein 1/blood , Insulin-Like Growth Factor Binding Protein 1/metabolism , Inflammation/metabolism , Inflammation/blood , Middle Aged , Obesity/metabolism , Obesity/complications , Obesity/blood , Stroke/metabolism , C-Reactive Protein/metabolism , Biomarkers/blood , Overweight/metabolism , Overweight/blood , Insulin-Like Peptides
9.
Alzheimers Dement (Amst) ; 16(2): e12576, 2024.
Article En | MEDLINE | ID: mdl-38605996

INTRODUCTION: While elevated blood glial fibrillary acidic protein (GFAP) has been associated with brain amyloid pathology, whether this association occurs in populations with high cerebral small vessel disease (CSVD) concomitance remains unclear. METHODS: Using a Singapore-based cohort of cognitively impaired subjects, we assessed associations between plasma GFAP and neuroimaging measures of brain amyloid and CSVD, including white matter hyperintensities (WMH). We also examined the diagnostic performance of plasma GFAP in detecting brain amyloid beta positivity (Aß+). RESULTS: When stratified by WMH status, elevated brain amyloid was associated with higher plasma GFAP only in the WMH- group (ß = 0.383; P < 0.001). The diagnostic performance of plasma GFAP in identifying Aß+ was significantly higher in the WMH- group (area under the curve [AUC] = 0.896) than in the WMH+ group (AUC = 0.712, P = 0.008). DISCUSSION: The biomarker utility of plasma GFAP in detecting brain amyloid pathology is dependent on the severity of concomitant WMH. Highlight: Glial fibrillary acidic protein (GFAP)'s association with brain amyloid is unclear in populations with high cerebral small vessel disease (CSVD).Plasma GFAP was measured in a cohort with CSVD and brain amyloid.Plasma GFAP was better in detecting amyloid in patients with low CSVD versus high CSVD.Biomarker utility of GFAP in detecting brain amyloid depends on the severity of CSVD.

10.
J Neurol ; 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668889

OBJECTIVE: Insidious disability worsening is a common feature in relapsing-remitting multiple sclerosis (RRMS). Many patients experience progression independent of relapse activity (PIRA) despite being treated with high efficacy disease-modifying therapies. We prospectively investigated associations of body-fluid and imaging biomarkers with PIRA. METHODS: Patients with early RRMS (n = 104) were prospectively included and followed up for 60 months. All patients were newly diagnosed and previously untreated. PIRA was defined using a composite score including the expanded disability status scale, 9-hole peg test, timed 25 foot walk test, and the symbol digit modalities test. Eleven body fluid and imaging biomarkers were determined at baseline and levels of serum neurofilament light (sNfL) and glial fibrillary acidic protein (sGFAP) were also measured annually thereafter. Association of baseline biomarkers with PIRA was investigated in multivariable logistic regression models adjusting for clinical and demographic confounding factors. Longitudinal serum biomarker dynamics were investigated in mixed effects models. RESULTS: Only sGFAP was significantly higher in PIRA at baseline (median [IQR] 73.9 [60.9-110.1] vs. 60.3 [45.2-79.9], p = 0.01). A cut-off of sGFAP > 65 pg/mL resulted in a sensitivity of 68% and specificity of 61%, to detect patients at higher risk of PIRA. In a multivariable logistic regression, sGFAP > 65 pg/mL was associated with higher odds of developing PIRA (odds ratio 4.3, 95% CI 1.44-12.86, p = 0.009). Repeated measures of sGFAP levels showed that patients with PIRA during follow-up had higher levels of sGFAP along the whole follow-up compared to stable patients (p < 0.001). CONCLUSION: Determination of sGFAP at baseline and follow-up may be useful in capturing disability accrual independent of relapse activity in early RRMS.

11.
Res Sq ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38562890

BACKGROUND: Neuropsychiatric symptoms (NPS) are common in older people, may occur early in the development of dementia disorders, and have been associated with faster cognitive decline. Here, our objectives were to investigate whether plasma levels of neurofilament light chain (NfL), glial fibrillary acid protein (GFAP), and tau phosphorylated at threonine 181 (pTau181) are associated with current NPS and predict future NPS in non-demented older people. Furthermore, we tested whether the presence of NPS combined with plasma biomarkers are useful to predict Alzheimer's disease (AD) pathology and cognitive decline. METHODS: One hundred and fifty-one participants with normal cognition (n=76) or mild cognitive impairment (n=75) were examined in a longitudinal brain aging study at the Memory Centers, University Hospital of Lausanne, Switzerland. Plasma levels of NfL, GFAP, and pTau181 along with CSF biomarkers of AD pathology were measured at baseline. NPS were assessed through the Neuropsychiatric Inventory Questionnaire (NPI-Q), along with the cognitive and functional performance at baseline and follow-up (mean: 20 months). Linear regression and ROC analyses were used to address the associations of interest. RESULTS: Higher GFAP levels were associated with NPS at baseline (ß=0.23, p=.008). Higher NfL and GFAP levels were associated with the presence of NPS at follow-up (ß=0.29, p=.007 and ß=0.28, p=.007, respectively) and with an increase in the NPI-Q severity score over time (ß=0.23, p=.035 and ß=0.27, p=.011, respectively). Adding NPS and the plasma biomarkers to a reference model improved the prediction of future NPS (AUC 0.73 to 0.84, p=.007) and AD pathology (AUC 0.79 to 0.86, p=.006), but not of cognitive decline (AUC 0.79 to 0.84, p=.068). CONCLUSION: Plasma GFAP is associated with NPS while NfL and GFAP are both associated with future NPS and NPS severity. Considering the presence of NPS along with blood-based AD-biomarkers may improve diagnosis and prediction of clinical progression of NPS and inform clinical decision-making in non-demented older people.

12.
Neurol Sci ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558318

INTRODUCTION: Alexander disease (AxD) is a rare leukodystrophy caused by dominant gain-of-function mutations in the gene encoding the astrocyte intermediate filament, glial fibrillary acidic protein (GFAP). However, there is an urgent need for biomarkers to assist in monitoring not only the progression of disease but also the response to treatment. GFAP is the obvious candidate for such a biomarker, as it is measurable in body fluids that are readily accessible for biopsy, namely cerebrospinal fluid and blood. However, in the case of ASOs, the treatment that is furthest in development, GFAP is the target of therapy and presumably would go down independent of disease status. Hence, there is a critical need for biomarkers that are not directly affected by the treatment strategy. METHODS: We explored the potential utility of biomarkers currently being studied in other neurodegenerative diseases and injuries, specifically neurofilament light protein (NfL), phosphorylated forms of tau, and amyloid-ß peptides (Aß42/40). RESULTS AND CONCLUSIONS: Here, we report that GFAP is elevated in plasma of all age groups afflicted by AxD, including those with adult onset. NfL and p-tau are also elevated, but to a much lesser extent than GFAP. In contrast, the levels of Aß40 and Aß42 are not altered in AxD.

13.
Res Sq ; 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38559231

Background: An elevated neutrophil-lymphocyte ratio (NLR) in blood has been associated with Alzheimer's disease (AD). However, an elevated NLR has also been implicated in many other conditions that are risk factors for AD, prompting investigation into whether the NLR is directly linked with AD pathology or a result of underlying comorbidities. Herein, we explored the relationship between the NLR and AD biomarkers in the cerebrospinal fluid (CSF) of cognitively unimpaired (CU) subjects. Adjusting for sociodemographics, APOE4, and common comorbidities, we investigated these associations in two cohorts: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the M.J. de Leon CSF repository at NYU. Specifically, we examined associations between the NLR and cross-sectional measures of amyloid-ß42 (Aß42), total tau (t-tau), and phosphorylated tau181 (p-tau), as well as the trajectories of these CSF measures obtained longitudinally. Results: A total of 111 ADNI and 190 NYU participants classified as CU with available NLR, CSF, and covariate data were included. Compared to NYU, ADNI participants were older (73.79 vs. 61.53, p < 0.001), had a higher proportion of males (49.5% vs. 36.8%, p = 0.042), higher BMIs (27.94 vs. 25.79, p < 0.001), higher prevalence of hypertensive history (47.7% vs. 16.3%, p < 0.001), and a greater percentage of Aß-positivity (34.2% vs. 20.0%, p = 0.009). In the ADNI cohort, we found cross-sectional associations between the NLR and CSF Aß42 (ß=-12.193, p = 0.021), but not t-tau or p-tau. In the NYU cohort, we found cross-sectional associations between the NLR and CSF t-tau (ß = 26.812, p = 0.019) and p-tau (ß = 3.441, p = 0.015), but not Aß42. In the NYU cohort alone, subjects classified as Aß+ (n = 38) displayed a stronger association between the NLR and t-tau (ß = 100.476, p = 0.037) compared to Aß- subjects or the non-stratified cohort. In both cohorts, the same associations observed in the cross-sectional analyses were observed after incorporating longitudinal CSF data. Conclusions: We report associations between the NLR and Aß42 in the older ADNI cohort, and between the NLR and t-tau and p-tau181 in the younger NYU cohort. Associations persisted after adjusting for comorbidities, suggesting a direct link between the NLR and AD. However, changes in associations between the NLR and specific AD biomarkers may occur as part of immunosenescence.

14.
J Neuroinflammation ; 21(1): 109, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38678300

BACKGROUND: Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS: Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS: The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1ß and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS: The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.


Biomarkers , Brain Concussion , Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Male , Biomarkers/blood , Female , Magnetic Resonance Imaging/methods , Adult , Middle Aged , Brain Concussion/diagnostic imaging , Brain Concussion/blood , Brain Concussion/complications , Young Adult , Neurofilament Proteins/blood , Glial Fibrillary Acidic Protein/blood , Aged , Time Factors
15.
Genes (Basel) ; 15(4)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38674431

BACKGROUND: Neurofilament proteins have been implicated to be altered in amyotrophic lateral sclerosis (ALS). The objectives of this study were to assess the diagnostic and prognostic utility of neurofilaments in ALS. METHODS: Studies were conducted in electronic databases (PubMed/MEDLINE, Embase, Web of Science, and Cochrane CENTRAL) from inception to 17 August 2023, and investigated neurofilament light (NfL) or phosphorylated neurofilament heavy chain (pNfH) in ALS. The study design, enrolment criteria, neurofilament concentrations, test accuracy, relationship between neurofilaments in cerebrospinal fluid (CSF) and blood, and clinical outcome were recorded. The protocol was registered with PROSPERO, CRD42022376939. RESULTS: Sixty studies with 8801 participants were included. Both NfL and pNfH measured in CSF showed high sensitivity and specificity in distinguishing ALS from disease mimics. Both NfL and pNfH measured in CSF correlated with their corresponding levels in blood (plasma or serum); however, there were stronger correlations between CSF NfL and blood NfL. NfL measured in blood exhibited high sensitivity and specificity in distinguishing ALS from controls. Both higher levels of NfL and pNfH either measured in blood or CSF were correlated with more severe symptoms as assessed by the ALS Functional Rating Scale Revised score and with a faster disease progression rate; however, only blood NfL levels were associated with shorter survival. DISCUSSION: Both NfL and pNfH measured in CSF or blood show high diagnostic utility and association with ALS functional scores and disease progression, while CSF NfL correlates strongly with blood (either plasma or serum) and is also associated with survival, supporting its use in clinical diagnostics and prognosis. Future work must be conducted in a prospective manner with standardized bio-specimen collection methods and analytical platforms, further improvement in immunoassays for quantification of pNfH in blood, and the identification of cut-offs across the ALS spectrum and controls.


Amyotrophic Lateral Sclerosis , Neurofilament Proteins , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Humans , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Intermediate Filaments/metabolism , Intermediate Filaments/genetics , Prognosis
16.
Crit Care ; 28(1): 116, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594704

BACKGROUND: The purpose was to evaluate glial fibrillary acidic protein (GFAP) and total-tau in plasma as predictors of poor neurological outcome after out-of-hospital (OHCA) and in-hospital cardiac arrest (IHCA), including comparisons with neurofilament light (NFL) and neuron-specific enolase (NSE). METHODS: Retrospective multicentre observational study of patients admitted to an intensive care unit (ICU) in three hospitals in Sweden 2014-2018. Blood samples were collected at ICU admission, 12 h, and 48 h post-cardiac arrest. Poor neurological outcome was defined as Cerebral Performance Category 3-5 at 2-6 months after cardiac arrest. Plasma samples were retrospectively analysed for GFAP, tau, and NFL. Serum NSE was analysed in clinical care. Prognostic performances were tested with the area under the receiver operating characteristics curve (AUC). RESULTS: Of the 428 included patients, 328 were OHCA, and 100 were IHCA. At ICU admission, 12 h and 48 h post-cardiac arrest, GFAP predicted neurological outcome after OHCA with AUC (95% CI) 0.76 (0.70-0.82), 0.86 (0.81-0.90) and 0.91 (0.87-0.96), and after IHCA with AUC (95% CI) 0.77 (0.66-0.87), 0.83 (0.74-0.92) and 0.83 (0.71-0.95). At the same time points, tau predicted outcome after OHCA with AUC (95% CI) 0.72 (0.66-0.79), 0.75 (0.69-0.81), and 0.93 (0.89-0.96) and after IHCA with AUC (95% CI) 0.61 (0.49-0.74), 0.68 (0.56-0.79), and 0.77 (0.65-0.90). Adding the change in biomarker levels between time points did not improve predictive accuracy compared to the last time point. In a subset of patients, GFAP at 12 h and 48 h, as well as tau at 48 h, offered similar predictive value as NSE at 48 h (the earliest time point NSE is recommended in guidelines) after both OHCA and IHCA. The predictive performance of NFL was similar or superior to GFAP and tau at all time points after OHCA and IHCA. CONCLUSION: GFAP and tau are promising biomarkers for neuroprognostication, with the highest predictive performance at 48 h after OHCA, but not superior to NFL. The predictive ability of GFAP may be sufficiently high for clinical use at 12 h after cardiac arrest.


Out-of-Hospital Cardiac Arrest , Humans , Glial Fibrillary Acidic Protein , Retrospective Studies , Intermediate Filaments , Prognosis , Biomarkers
17.
Neurology ; 102(9): e209402, 2024 May 14.
Article En | MEDLINE | ID: mdl-38593394

OBJECTIVES: To determine the prevalence of individuals with Alzheimer disease (AD) eligible for treatment with the recently FDA-approved lecanemab based on data from a population-based sample of 70-year-olds and extrapolate an estimation of individuals eligible in Europe and the United States. METHODS: Participants from the Gothenburg H70 Birth Cohort Study with clinical data, CSF-amyloid beta 42, and brain MRI analysis were evaluated for eligibility to receive lecanemab treatment according to FDA-approved recommendations, noting factors requiring special consideration. Results were used to extrapolate the number of eligible individuals in Europe and the United States using public demographic data. RESULTS: Thirty (10.3%) of 290 participants met the indication for treatment of whom 18 (6.2%) were eligible and did not present factors requiring special consideration. Our estimate that 6.2% of all 70-year-olds in the full cohort are eligible for treatment extrapolates to an approximation that around 5.9 million Europeans and 2.2 million US residents could be eligible. DISCUSSION: Information on proportion of individuals eligible for AD treatment with lecanemab in the general public is limited. We provide information on 70-year-olds in Sweden and extrapolate these data to Europe and the United States. This study opens for larger studies on this proportion and implementation of lecanemab treatment.


Alzheimer Disease , Amyloid beta-Peptides , Antibodies, Monoclonal, Humanized , Humans , United States , Cohort Studies , Independent Living , Alzheimer Disease/epidemiology
18.
J Neurol ; 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589629

Multimodal biomarkers may identify former contact sports athletes with repeated concussions and at risk for dementia. Our study aims to investigate whether biomarker evidence of neurodegeneration in former professional athletes with repetitive concussions (ExPro) is associated with worse cognition and mood/behavior, brain atrophy, and altered functional connectivity. Forty-one contact sports athletes with repeated concussions were divided into neurodegenerative biomarker-positive (n = 16) and biomarker-negative (n = 25) groups based on positivity of serum neurofilament light-chain. Six healthy controls (negative for biomarkers) with no history of concussions were also analyzed. We calculated cognitive and mood/behavior composite scores from neuropsychological assessments. Gray matter volume maps and functional connectivity of the default mode, salience, and frontoparietal networks were compared between groups using ANCOVAs, controlling for age, and total intracranial volume. The association between the connectivity networks and sports characteristics was analyzed by multiple regression analysis in all ExPro. Participants presented normal-range mean performance in executive function, memory, and mood/behavior tests. The ExPro groups did not differ in professional years played, age at first participation in contact sports, and number of concussions. There were no differences in gray matter volume between groups. The neurodegenerative biomarker-positive group had lower connectivity in the default mode network (DMN) compared to the healthy controls and the neurodegenerative biomarker-negative group. DMN disconnection was associated with increased number of concussions in all ExPro. Biomarkers of neurodegeneration may be useful to detect athletes that are still cognitively normal, but with functional connectivity alterations after concussions and at risk of dementia.

19.
Nat Commun ; 15(1): 2908, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575616

Staging amyloid-beta (Aß) pathophysiology according to the intensity of neurodegeneration could identify individuals at risk for cognitive decline in Alzheimer's disease (AD). In blood, phosphorylated tau (p-tau) associates with Aß pathophysiology but an AD-type neurodegeneration biomarker has been lacking. In this multicenter study (n = 1076), we show that brain-derived tau (BD-tau) in blood increases according to concomitant Aß ("A") and neurodegeneration ("N") abnormalities (determined using cerebrospinal fluid biomarkers); We used blood-based A/N biomarkers to profile the participants in this study; individuals with blood-based p-tau+/BD-tau+ profiles had the fastest cognitive decline and atrophy rates, irrespective of the baseline cognitive status. Furthermore, BD-tau showed no or much weaker correlations with age, renal function, other comorbidities/risk factors and self-identified race/ethnicity, compared with other blood biomarkers. Here we show that blood-based BD-tau is a biomarker for identifying Aß-positive individuals at risk of short-term cognitive decline and atrophy, with implications for clinical trials and implementation of anti-Aß therapies.


Alzheimer Disease , Cognitive Dysfunction , Humans , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Brain/metabolism , Biomarkers/cerebrospinal fluid , Atrophy
20.
Nat Rev Neurol ; 20(5): 269-287, 2024 05.
Article En | MEDLINE | ID: mdl-38609644

Neurofilament proteins have been validated as specific body fluid biomarkers of neuro-axonal injury. The advent of highly sensitive analytical platforms that enable reliable quantification of neurofilaments in blood samples and simplify longitudinal follow-up has paved the way for the development of neurofilaments as a biomarker in clinical practice. Potential applications include assessment of disease activity, monitoring of treatment responses, and determining prognosis in many acute and chronic neurological disorders as well as their use as an outcome measure in trials of novel therapies. Progress has now moved the measurement of neurofilaments to the doorstep of routine clinical practice for the evaluation of individuals. In this Review, we first outline current knowledge on the structure and function of neurofilaments. We then discuss analytical and statistical approaches and challenges in determining neurofilament levels in different clinical contexts and assess the implications of neurofilament light chain (NfL) levels in normal ageing and the confounding factors that need to be considered when interpreting NfL measures. In addition, we summarize the current value and potential clinical applications of neurofilaments as a biomarker of neuro-axonal damage in a range of neurological disorders, including multiple sclerosis, Alzheimer disease, frontotemporal dementia, amyotrophic lateral sclerosis, stroke and cerebrovascular disease, traumatic brain injury, and Parkinson disease. We also consider the steps needed to complete the translation of neurofilaments from the laboratory to the management of neurological diseases in clinical practice.


Biomarkers , Intermediate Filaments , Nervous System Diseases , Neurofilament Proteins , Humans , Biomarkers/metabolism , Biomarkers/blood , Nervous System Diseases/diagnosis , Nervous System Diseases/metabolism , Nervous System Diseases/blood , Neurofilament Proteins/blood , Intermediate Filaments/metabolism
...